Sunday, February 12, 2017

Méthode De Prévision Moyenne Mobile Simple

La méthode la plus simple serait de prendre la moyenne de janvier à mars et d'utiliser cette estimation pour calculer les ventes d'avril 1982: (129 134 122) 3 128.333 Par conséquent, selon les ventes de janvier à mars, vous prédirez que les ventes en avril seront de 128 333. Une fois que les ventes réelles d'avril sont arrivées, vous calculez ensuite la prévision pour mai, cette fois en février à avril. Vous devez être cohérent avec le nombre de périodes que vous utilisez pour la prévision moyenne mobile. Le nombre de périodes que vous utilisez dans vos prévisions de moyenne mobile est arbitraire, vous pouvez utiliser seulement deux périodes, ou cinq ou six périodes de votre volonté pour générer vos prévisions. L'approche ci-dessus est une moyenne mobile simple. Parfois, les ventes plus récentes8217 peuvent être plus influentes des ventes du mois à venir, donc vous voulez donner à ces mois plus près plus de poids dans votre modèle de prévision. Il s'agit d'une moyenne mobile pondérée. Et tout comme le nombre de périodes, les poids que vous assignez sont purement arbitraires. Let8217s dire que vous vouliez donner March8217s ventes 50 poids, Février8217s 30 poids et Janvier8217s 20. Ensuite, votre prévision pour avril sera 127.000 (122.50) (134.30) (129.20) 127. Limites des méthodes de moyenne mobile Les moyennes mobiles sont considérées comme une technique de prévision 8220smoothing8221. Parce que vous êtes en train de prendre une moyenne au fil du temps, vous adouciez (ou lissage) les effets des occurrences irrégulières dans les données. Par conséquent, les effets de la saisonnalité, des cycles économiques et d'autres événements aléatoires peuvent considérablement augmenter les erreurs de prévision. Jetez un coup d'œil à une année complète de 8217s de données, et comparer une moyenne mobile de 3 périodes et une moyenne mobile de 5 périodes: Notez que dans cette instance que je n'ai pas créer des prévisions, mais plutôt centré les moyennes mobiles. La première moyenne mobile sur trois mois est pour février, et elle est la moyenne de janvier, février et mars. J'ai aussi fait semblable pour la moyenne sur 5 mois. Maintenant, jetez un oeil sur le graphique suivant: Qu'est-ce que vous voyez n'est pas la moyenne de trois mois de la série moyenne beaucoup plus lisse que la série de ventes réelles Et comment environ la moyenne mobile de cinq mois It8217s encore plus lisse. Par conséquent, plus vous utilisez de périodes dans votre moyenne mobile, le plus lisse votre série chronologique. Par conséquent, pour les prévisions, une moyenne mobile simple peut ne pas être la méthode la plus précise. Les méthodes moyennes mobiles se révèlent très précieuses lorsque l'on essaie d'extraire les composantes saisonnières, irrégulières et cycliques d'une série chronologique pour des méthodes de prévision plus avancées, comme la régression et l'ARIMA, et l'utilisation de moyennes mobiles pour décomposer une série chronologique sera traitée plus tard Dans la série. Détermination de l'exactitude d'un modèle de moyenne mobile En général, vous voulez une méthode de prévision qui a le moins d'erreur entre les résultats réels et prédits. L'une des mesures les plus courantes de l'exactitude des prévisions est l'écart absolu moyen (MAD). Dans cette approche, pour chaque période de la série chronologique pour laquelle vous avez généré une prévision, vous prenez la valeur absolue de la différence entre les valeurs réelles et prévisionnelles de cette période (la déviation). Ensuite, vous faites la moyenne de ces écarts absolus et vous obtenez une mesure de MAD. MAD peut être utile pour décider du nombre de périodes que vous faites en moyenne, ou de la quantité de poids que vous placez sur chaque période. Généralement, vous choisissez celui qui donne le MAD le plus bas. Voici un exemple de la façon dont MAD est calculé: MAD est simplement la moyenne de 8, 1 et 3. Moyennes mobiles: Recap En utilisant les moyennes mobiles pour la prévision, n'oubliez pas: Les moyennes mobiles peuvent être simples ou pondérées Le nombre de périodes que vous utilisez pour votre Moyenne et tous les poids que vous assignez à chacun sont strictement arbitraires Moyennes mobiles lissent les motifs irréguliers dans les séries chronologiques données plus le nombre de périodes utilisées pour chaque point de données, plus l'effet de lissage En raison de lissage, la prévision des ventes du mois prochain 8217s basé sur le Les plus récentes ventes de mois de mai 8217s peuvent entraîner de grands écarts en raison de la saisonnalité, cyclique, et les modèles irréguliers dans les données et Les capacités de lissage d'une méthode de moyenne mobile peut être utile pour décomposer une série chronologique pour les méthodes de prévision plus avancées. Semaine suivante: Exponential Smoothing Dans la semaine prochaine 8217s Prévision vendredi. Nous allons discuter des méthodes de lissage exponentielle, et vous verrez qu'ils peuvent être bien supérieurs à la moyenne mobile des méthodes de prévision. 1) Pouvez-vous utiliser l'approche centrée MA pour prévoir ou tout simplement pour enlever la saisonnalité 2) Quand Vous utilisez la t simple (t-1t-2t-k) k MA pour prévoir une période à venir, est-il possible de prévoir plus d'une période à venir Je suppose que votre prévision serait l'un des points d'alimentation dans la prochaine. Merci. J'adore l'info et vos explications Je suis content que vous ayez aimé le blog I8217m sûr que plusieurs analystes ont utilisé l'approche centrée MA pour la prévision, mais personnellement je ne le ferais pas, puisque cette approche entraîne une perte d'observations aux deux extrémités. En fait, cela relie votre deuxième question. Généralement, un MA simple est utilisé pour prévoir une seule période à venir, mais de nombreux analystes 8211 et moi aussi parfois 8211 utiliseront ma prévision d'une période à venir comme l'une des entrées à la deuxième période à venir. Il est important de se rappeler que plus vous prévoyez de prévoir dans l'avenir, plus votre risque d'erreur de prévision est élevé. C'est la raison pour laquelle je ne recommande pas un MA centré pour la prévision 8211 la perte d'observations à la fin signifie avoir à compter sur les prévisions pour les observations perdues, ainsi que la période à venir, de sorte qu'il ya plus de chance d'erreur de prévision. Les lecteurs: vous êtes invités à peser dessus. Avez-vous des idées ou des suggestions sur ce Brian, merci pour votre commentaire et vos compliments sur le blog Nice initiative et une belle explication. It8217s vraiment utile. Je prévois des circuits imprimés personnalisés pour un client qui ne donne aucune prévision. J'ai utilisé la moyenne mobile, mais il n'est pas très précis que l'industrie peut monter et descendre. Nous voyons vers le milieu de l'été à la fin de l'année que l'expédition pcb8217s est en place. Ensuite, nous voyons au début de l'année ralentit. Comment puis-je être plus précis avec mes données Katrina, d'après ce que vous m'avez dit, il semble que vos ventes de circuits imprimés ont une composante saisonnière. Je ne saisir la saisonnalité dans certains des autres postes vendredi Prévisions. Une autre approche que vous pouvez utiliser, ce qui est assez facile, est l'algorithme Holt-Winters, qui tient compte de la saisonnalité. Vous pouvez trouver une bonne explication ici. Assurez-vous de déterminer si vos modèles saisonniers sont multiplicatifs ou additifs, car l'algorithme est légèrement différent pour chacun. Si vous tracer vos données mensuelles de quelques années et voir que les variations saisonnières à la même époque des années semblent être constante d'année en année, alors la saisonnalité est additive si les variations saisonnières au fil du temps semblent augmenter, alors la saisonnalité est Multiplicative. La plupart des séries chronologiques saisonnières seront multiplicatives. En cas de doute, supposer multiplicatif. Bonne chance Bonjour, Entre ces méthodes:. Prévision de la nef. Mise à jour de la moyenne. Moyenne mobile de longueur k. Moyenne mobile pondérée de longueur k OU Lissage exponentiel Lequel de ces modèles de mise à jour me recommandez-vous d'utiliser pour prévoir les données? À mon avis, je pense à la moyenne mobile. Mais je ne sais pas comment le rendre clair et structuré Cela dépend vraiment de la quantité et la qualité des données que vous avez et votre horizon de prévision (à long terme, à moyen terme ou à court terme) 2.3 Quelques méthodes simples de prévision beer2 lt - Fenêtre 40 ausbeer, début 1992. fin 2006 - .1 41 beerfit1 lt - meanf 40 bière2, h 11 41 beerfit2 ltnaive 40 beer2, h 11 41 beerfit3 lt - snaive 40 beer2, h 11 41 parcelle 40 beerfit1, parcelle. Conf FALSE, principale quotPrévisions pour la production trimestrielle de bière 41 lignes 40 beerfit2mean, col 2 41 lignes 40 beerfit3mean, col 3 41 légende 40 quottoprightquot, lty 1. col c 40 4. 2. 3 41, légende c 40 Méthode Moyenne. QuotNaive methodquot. Méthode naïve saisonnière 41 41 Dans la figure 2.14, les méthodes non saisonnières ont été appliquées à une série de 250 jours de l'indice Dow Jones. Dj2 lt - fenêtre 40 dj, fin 250 41 tracé 40 dj2, principal QuotDow Jones Index (fin quotidien 15 juil 94) quot, ylab quotquot, xlab quotDayquot, xlim c 40 2. 290 41 41 lignes 40 moyenne de 40 dj2, h 42 41 Moyenne, col 4 41 lignes 40 rwf 40 dj2, h 42 41 moyenne, col 2 41 lignes 40 rwf 40 dj2, dérive TRUE, h 42 41 moyenne, col 3 41 légende 40 quottopleftquot, lty 1. col c 40 4. 2. 3 41, légende c 40 Méthode moyenne. QuotNaive methodquot. QuotDrift methodquot 41 41 Parfois, une de ces méthodes simples sera la meilleure méthode de prévision disponible. Mais dans de nombreux cas, ces méthodes serviront de repères plutôt que la méthode de choix. C'est-à-dire, quelles que soient les méthodes de prévision que nous développons, ils seront comparés à ces méthodes simples pour s'assurer que la nouvelle méthode est meilleure que ces alternatives simples. Modèles de lissage moyen et exponentiel Comme première étape pour aller au-delà des modèles moyens, des modèles de marche aléatoire et des modèles de tendance linéaire, des modèles non saisonniers et des tendances peuvent être extrapolés à l'aide d'une moyenne mobile ou d'un lissage modèle. L'hypothèse de base derrière les modèles de moyenne et de lissage est que la série temporelle est localement stationnaire avec une moyenne lentement variable. Par conséquent, nous prenons une moyenne mobile (locale) pour estimer la valeur actuelle de la moyenne, puis nous l'utilisons comme prévision pour le proche avenir. Cela peut être considéré comme un compromis entre le modèle moyen et le modèle randonnée aléatoire sans dérive. La même stratégie peut être utilisée pour estimer et extrapoler une tendance locale. Une moyenne mobile est souvent appelée une version quotsmoothedquot de la série originale parce que la moyenne à court terme a pour effet de lisser les bosses dans la série d'origine. En ajustant le degré de lissage (la largeur de la moyenne mobile), on peut espérer trouver un équilibre optimal entre la performance des modèles de marche moyenne et aléatoire. Le modèle le plus simple de la moyenne est le. Moyenne mobile simple (également pondérée): La prévision de la valeur de Y à l'instant t1 qui est faite à l'instant t est égale à la moyenne simple des observations m les plus récentes: (Ici et ailleurs, je vais utiliser le symbole 8220Y-hat8221 pour me tenir Pour une prévision de la série temporelle Y faite le plus tôt possible par un modèle donné). Cette moyenne est centrée à la période t (m1) 2, ce qui implique que l'estimation de la moyenne locale aura tendance à se situer en deçà du vrai Valeur de la moyenne locale d'environ (m1) 2 périodes. Ainsi, nous disons que l'âge moyen des données dans la moyenne mobile simple est (m1) 2 par rapport à la période pour laquelle la prévision est calculée: c'est le temps pendant lequel les prévisions auront tendance à être en retard par rapport aux points de retournement dans les données . Par exemple, si vous faites la moyenne des 5 dernières valeurs, les prévisions seront environ 3 périodes en retard pour répondre aux points de retournement. Notez que si m1, le modèle de moyenne mobile simple (SMA) est équivalent au modèle de marche aléatoire (sans croissance). Si m est très grand (comparable à la longueur de la période d'estimation), le modèle SMA est équivalent au modèle moyen. Comme pour tout paramètre d'un modèle de prévision, il est courant d'ajuster la valeur de k afin d'obtenir le meilleur rapport entre les données, c'est-à-dire les erreurs de prévision les plus faibles en moyenne. Voici un exemple d'une série qui semble présenter des fluctuations aléatoires autour d'une moyenne lentement variable. Tout d'abord, essayons de l'adapter à un modèle de marche aléatoire, ce qui équivaut à une moyenne mobile simple de 1 terme: Le modèle de marche aléatoire répond très rapidement aux changements dans la série, mais en le faisant, il choisit une grande partie du quotnoise dans le Données (les fluctuations aléatoires) ainsi que le quotsignalquot (la moyenne locale). Si nous essayons plutôt une moyenne mobile simple de 5 termes, nous obtenons un ensemble plus lisse de prévisions: La moyenne mobile simple à 5 termes génère des erreurs beaucoup plus faibles que le modèle de marche aléatoire dans ce cas. L'âge moyen des données de cette prévision est de 3 ((51) 2), de sorte qu'il tend à être en retard par rapport aux points de retournement d'environ trois périodes. (Par exemple, un ralentissement semble avoir eu lieu à la période 21, mais les prévisions ne tournent pas jusqu'à plusieurs périodes plus tard.) Notez que les prévisions à long terme du modèle SMA sont une ligne droite horizontale, tout comme dans la marche aléatoire modèle. Ainsi, le modèle SMA suppose qu'il n'y a pas de tendance dans les données. Cependant, alors que les prévisions du modèle randonnée aléatoire sont tout simplement égales à la dernière valeur observée, les prévisions du modèle SMA sont égales à une moyenne pondérée des valeurs récentes. Les limites de confiance calculées par Statgraphics pour les prévisions à long terme de la moyenne mobile simple ne s'élargissent pas à mesure que l'horizon de prévision augmente. Ce n'est évidemment pas correct Malheureusement, il n'existe pas de théorie statistique sous-jacente qui nous indique comment les intervalles de confiance devraient élargir pour ce modèle. Toutefois, il n'est pas trop difficile de calculer des estimations empiriques des limites de confiance pour les prévisions à plus long terme. Par exemple, vous pouvez créer une feuille de calcul dans laquelle le modèle SMA sera utilisé pour prévoir 2 étapes à venir, 3 étapes à venir, etc. dans l'exemple de données historiques. Vous pouvez ensuite calculer les écarts types des erreurs à chaque horizon de prévision, puis construire des intervalles de confiance pour les prévisions à long terme en ajoutant et en soustrayant des multiples de l'écart-type approprié. Si nous essayons une moyenne mobile simple de 9 termes, nous obtenons des prévisions encore plus lisses et plus d'un effet de retard: L'âge moyen est maintenant 5 périodes ((91) 2). Si l'on prend une moyenne mobile à 19 mois, l'âge moyen passe à 10: On remarque que les prévisions sont maintenant en retard par rapport aux points de retournement d'environ 10 périodes. Quelle quantité de lissage est la meilleure pour cette série Voici un tableau qui compare leurs statistiques d'erreur, incluant également une moyenne à 3 termes: Le modèle C, la moyenne mobile à 5 termes, donne la plus faible valeur de RMSE d'une petite marge sur les 3 À moyen terme et à moyen terme, et leurs autres statistiques sont presque identiques. Ainsi, parmi les modèles avec des statistiques d'erreur très similaires, nous pouvons choisir si nous préférerions un peu plus de réactivité ou un peu plus de souplesse dans les prévisions. Le modèle de la moyenne mobile simple décrit ci-dessus a la propriété indésirable de traiter les dernières k observations de manière égale et d'ignorer complètement toutes les observations précédentes. (Retourner au haut de la page.) Lissage Exponentiel Simple (moyenne exponentielle pondérée) Intuitivement, les données passées devraient être actualisées de façon plus graduelle - par exemple, l'observation la plus récente devrait prendre un peu plus de poids que la deuxième plus récente, et la deuxième plus récente devrait avoir un peu plus de poids que la 3ème plus récente, et bientôt. Le simple lissage exponentiel (SES) modèle accomplit cela. Soit 945 une constante de quotslacement constante (un nombre entre 0 et 1). Une façon d'écrire le modèle consiste à définir une série L qui représente le niveau actuel (c'est-à-dire la valeur moyenne locale) de la série estimée à partir des données jusqu'à présent. La valeur de L à l'instant t est calculée récursivement à partir de sa propre valeur précédente comme ceci: La valeur lissée actuelle est donc une interpolation entre la valeur lissée précédente et l'observation courante, où 945 contrôle la proximité de la valeur interpolée à la valeur la plus récente observation. La prévision pour la période suivante est simplement la valeur lissée actuelle: De manière équivalente, nous pouvons exprimer directement la prochaine prévision en fonction des prévisions précédentes et des observations précédentes, dans l'une des versions équivalentes suivantes. Dans la première version, la prévision est une interpolation entre la précédente prévision et l'observation précédente: Dans la deuxième version, la prévision suivante est obtenue en ajustant la prévision précédente dans la direction de l'erreur précédente par une fraction 945. est l'erreur faite à Temps t. Dans la troisième version, la prévision est une moyenne mobile exponentiellement pondérée (c'est-à-dire actualisée) avec le facteur d'actualisation 1-945: La version d'interpolation de la formule de prévision est la plus simple à utiliser si vous mettez en œuvre le modèle sur une feuille de calcul: Cellule unique et contient des références de cellule pointant vers la prévision précédente, l'observation précédente et la cellule où la valeur de 945 est stockée. Notez que si 945 1, le modèle SES est équivalent à un modèle de marche aléatoire (sans croissance). Si 945 0, le modèle SES est équivalent au modèle moyen, en supposant que la première valeur lissée est égale à la moyenne. (Retourner au haut de la page.) L'âge moyen des données dans la prévision de lissage exponentielle simple est de 1 945 par rapport à la période pour laquelle la prévision est calculée. (Ce n'est pas censé être évident, mais on peut facilement le montrer en évaluant une série infinie.) Par conséquent, la prévision moyenne mobile simple tend à être en retard par rapport aux points de retournement d'environ 1 945 périodes. Par exemple, lorsque 945 0,5 le lag est 2 périodes lorsque 945 0,2 le retard est de 5 périodes lorsque 945 0,1 le lag est de 10 périodes, et ainsi de suite. Pour un âge moyen donné (c'est-à-dire le décalage), le lissage exponentiel simple (SES) est un peu supérieur à la moyenne mobile simple (SMA), car il place relativement plus de poids sur l'observation la plus récente. Il est un peu plus sensible aux changements survenus dans le passé récent. Par exemple, un modèle SMA avec 9 termes et un modèle SES avec 945 0,2 ont tous deux une moyenne d'âge de 5 pour les données dans leurs prévisions, mais le modèle SES met plus de poids sur les 3 dernières valeurs que le modèle SMA et à la Un autre avantage important du modèle SES par rapport au modèle SMA est que le modèle SES utilise un paramètre de lissage qui est variable en continu, de sorte qu'il peut facilement être optimisé En utilisant un algorithme quotsolverquot pour minimiser l'erreur quadratique moyenne. La valeur optimale de 945 dans le modèle SES de cette série s'élève à 0,2961, comme indiqué ici: L'âge moyen des données de cette prévision est de 10,2961 3,4 périodes, ce qui est similaire à celle d'une moyenne mobile simple à 6 termes. Les prévisions à long terme du modèle SES sont une droite horizontale. Comme dans le modèle SMA et le modèle randonnée aléatoire sans croissance. Cependant, notez que les intervalles de confiance calculés par Statgraphics divergent maintenant d'une manière raisonnable et qu'ils sont sensiblement plus étroits que les intervalles de confiance pour le modèle de marche aléatoire. Le modèle SES suppose que la série est quelque peu plus prévisible que le modèle de marche aléatoire. Un modèle SES est en fait un cas particulier d'un modèle ARIMA. La théorie statistique des modèles ARIMA fournit une base solide pour le calcul des intervalles de confiance pour le modèle SES. En particulier, un modèle SES est un modèle ARIMA avec une différence non saisonnière, un terme MA (1) et aucun terme constant. Autrement connu sous le nom de modèle de MARIMA (0,1,1) sans constantquot. Le coefficient MA (1) du modèle ARIMA correspond à la quantité 1 945 dans le modèle SES. Par exemple, si vous ajustez un modèle ARIMA (0,1,1) sans constante à la série analysée ici, le coefficient MA (1) estimé s'avère être 0.7029, ce qui est presque exactement un moins 0.2961. Il est possible d'ajouter l'hypothèse d'une tendance linéaire constante non nulle à un modèle SES. Pour cela, il suffit de spécifier un modèle ARIMA avec une différence non saisonnière et un terme MA (1) avec une constante, c'est-à-dire un modèle ARIMA (0,1,1) avec constante. Les prévisions à long terme auront alors une tendance égale à la tendance moyenne observée sur l'ensemble de la période d'estimation. Vous ne pouvez pas le faire en conjonction avec l'ajustement saisonnier, car les options de réglage saisonnier sont désactivées lorsque le type de modèle est réglé sur ARIMA. Cependant, vous pouvez ajouter une tendance exponentielle à long terme constante à un modèle de lissage exponentiel simple (avec ou sans ajustement saisonnier) en utilisant l'option d'ajustement de l'inflation dans la procédure de prévision. Le taux d'inflation appropriée (taux de croissance en pourcentage) par période peut être estimé comme le coefficient de pente dans un modèle de tendance linéaire adapté aux données en conjonction avec une transformation logarithmique naturelle, ou il peut être basé sur d'autres informations indépendantes concernant les perspectives de croissance à long terme . (Retour au haut de la page) Browns Linear (c'est-à-dire double) Lissage exponentiel Les modèles SMA et SES supposent qu'il n'y a aucune tendance des données (ce qui est normalement correct ou au moins pas trop mauvais pour 1- Des prévisions d'avance lorsque les données sont relativement bruyantes), et elles peuvent être modifiées pour incorporer une tendance linéaire constante comme indiqué ci-dessus. Qu'en est-il des tendances à court terme Si une série affiche un taux de croissance variable ou un schéma cyclique qui se distingue clairement du bruit, et s'il est nécessaire de prévoir plus d'une période à venir, l'estimation d'une tendance locale pourrait également être un problème. Le modèle de lissage exponentiel simple peut être généralisé pour obtenir un modèle linéaire de lissage exponentiel (LES) qui calcule des estimations locales de niveau et de tendance. Le modèle de tendance le plus simple variant dans le temps est le modèle de lissage exponentiel linéaire de Browns, qui utilise deux séries lissées différentes qui sont centrées à différents moments. La formule de prévision est basée sur une extrapolation d'une droite passant par les deux centres. (Une version plus sophistiquée de ce modèle, Holt8217s, est discutée ci-dessous.) La forme algébrique du modèle de lissage exponentiel linéaire de Brown8217s, comme celle du modèle de lissage exponentiel simple, peut être exprimée sous différentes formes différentes mais équivalentes. La forme quotométrique de ce modèle est habituellement exprimée comme suit: Soit S la série lissée par singulier obtenue en appliquant un lissage exponentiel simple à la série Y. C'est-à-dire que la valeur de S à la période t est donnée par: (Rappelons que, sous simple Le lissage exponentiel, ce serait la prévision de Y à la période t1.) Puis, désignons par Squot la série doublement lissée obtenue en appliquant le lissage exponentiel simple (en utilisant le même 945) à la série S: Enfin, la prévision pour Y tk. Pour tout kgt1, est donnée par: Ceci donne e 1 0 (c'est-à-dire tricher un peu, et laisser la première prévision égaler la première observation réelle), et e 2 Y 2 8211 Y 1. Après quoi les prévisions sont générées en utilisant l'équation ci-dessus. Cela donne les mêmes valeurs ajustées que la formule basée sur S et S si ces derniers ont été démarrés en utilisant S 1 S 1 Y 1. Cette version du modèle est utilisée sur la page suivante qui illustre une combinaison de lissage exponentiel avec ajustement saisonnier. Holt8217s Linear Exponential Smoothing Brown8217s Le modèle LES calcule les estimations locales de niveau et de tendance en lissant les données récentes, mais le fait qu'il le fait avec un seul paramètre de lissage impose une contrainte sur les modèles de données qu'il peut adapter: le niveau et la tendance Ne sont pas autorisés à varier à des taux indépendants. Le modèle LES de Holt8217s aborde cette question en incluant deux constantes de lissage, une pour le niveau et une pour la tendance. A tout moment t, comme dans le modèle Brown8217s, il existe une estimation L t du niveau local et une estimation T t de la tendance locale. Ici, elles sont calculées récursivement à partir de la valeur de Y observée au temps t et des estimations précédentes du niveau et de la tendance par deux équations qui leur appliquent un lissage exponentiel séparément. Si le niveau et la tendance estimés au temps t-1 sont L t82091 et T t-1. Respectivement, alors la prévision pour Y tshy qui aurait été faite au temps t-1 est égale à L t-1 T t-1. Lorsque la valeur réelle est observée, l'estimation actualisée du niveau est calculée récursivement en interpolant entre Y tshy et sa prévision, L t-1 T t-1, en utilisant des poids de 945 et 1 945. La variation du niveau estimé, À savoir L t 8209 L t82091. Peut être interprété comme une mesure bruyante de la tendance à l'instant t. L'estimation actualisée de la tendance est ensuite calculée récursivement en interpolant entre L t 8209 L t82091 et l'estimation précédente de la tendance, T t-1. Utilisant des poids de 946 et 1-946: L'interprétation de la constante de lissage de tendance 946 est analogue à celle de la constante de lissage de niveau 945. Les modèles avec de petites valeurs de 946 supposent que la tendance ne change que très lentement avec le temps tandis que les modèles avec 946 supposent qu'il change plus rapidement. Un modèle avec un grand 946 croit que l'avenir lointain est très incertain, parce que les erreurs dans l'estimation de la tendance deviennent très importantes lors de la prévision de plus d'une période à venir. Les constantes de lissage 945 et 946 peuvent être estimées de la manière habituelle en minimisant l'erreur quadratique moyenne des prévisions à 1 pas. Lorsque cela est fait dans Statgraphics, les estimations s'avèrent être 945 0,3048 et 946 0,008. La très petite valeur de 946 signifie que le modèle suppose très peu de changement dans la tendance d'une période à l'autre, donc, fondamentalement, ce modèle essaie d'estimer une tendance à long terme. Par analogie avec la notion d'âge moyen des données utilisées pour estimer le niveau local de la série, l'âge moyen des données utilisées pour estimer la tendance locale est proportionnel à 1 946, mais pas exactement égal à celui-ci . Dans ce cas, cela s'avère être 10.006 125. Ceci n'est pas un nombre très précis dans la mesure où la précision de l'estimation de 946 est vraiment de 3 décimales, mais elle est du même ordre de grandeur que la taille de l'échantillon de 100, donc Ce modèle est la moyenne sur beaucoup d'histoire dans l'estimation de la tendance. Le graphique ci-dessous montre que le modèle ERP estime une tendance locale légèrement plus grande à la fin de la série que la tendance constante estimée dans le modèle SEStrend. En outre, la valeur estimée de 945 est presque identique à celle obtenue en ajustant le modèle SES avec ou sans tendance, donc c'est presque le même modèle. Maintenant, est-ce que ces ressembler à des prévisions raisonnables pour un modèle qui est censé être l'estimation d'une tendance locale Si vous 8220eyeball8221 cette intrigue, il semble que la tendance locale a tourné vers le bas à la fin de la série Qu'est-ce qui s'est passé Les paramètres de ce modèle Ont été estimées en minimisant l'erreur au carré des prévisions à un pas, et non des prévisions à plus long terme, auquel cas la tendance ne fait pas beaucoup de différence. Si tout ce que vous regardez sont des erreurs en une étape, vous ne voyez pas l'image plus grande des tendances sur (disons) 10 ou 20 périodes. Afin d'obtenir ce modèle plus en phase avec notre extrapolation ophtalmique des données, nous pouvons ajuster manuellement la constante de lissage de tendance afin qu'il utilise une ligne de base plus courte pour l'estimation de tendance. Par exemple, si nous choisissons de fixer 946 0,1, alors l'âge moyen des données utilisées pour estimer la tendance locale est de 10 périodes, ce qui signifie que nous faisons la moyenne de la tendance au cours des 20 dernières périodes. Here8217s ce que l'intrigue de prévision ressemble si nous fixons 946 0.1 tout en gardant 945 0.3. Cela semble intuitivement raisonnable pour cette série, bien qu'il soit probablement dangereux d'extrapoler cette tendance plus de 10 périodes dans l'avenir. Qu'en est-il des statistiques d'erreur Voici une comparaison de modèles pour les deux modèles présentés ci-dessus ainsi que trois modèles SES. La valeur optimale de 945 pour le modèle SES est d'environ 0,3, mais des résultats similaires (avec un peu plus ou moins de réactivité, respectivement) sont obtenus avec 0,5 et 0,2. (A) Holts linéaire exp. Lissage avec alpha 0,3048 et bêta 0,008 (B) Holts linéaire exp. Lissage avec alpha 0.3 et bêta 0.1 (C) Lissage exponentiel simple avec alpha 0.5 (D) Lissage exponentiel simple avec alpha 0.3 (E) Lissage exponentiel simple avec alpha 0.2 Leurs stats sont quasiment identiques, donc nous ne pouvons pas vraiment faire le choix sur la base Des erreurs de prévision à 1 pas dans l'échantillon de données. Nous devons nous rabattre sur d'autres considérations. Si nous croyons fermement qu'il est logique de baser l'estimation de la tendance actuelle sur ce qui s'est produit au cours des 20 dernières périodes, nous pouvons faire valoir le modèle ERP avec 945 0,3 et 946 0,1. Si nous voulons être agnostiques quant à savoir s'il existe une tendance locale, alors l'un des modèles SSE pourrait être plus facile à expliquer et donnerait également plus de prévisions moyennes de route pour les 5 ou 10 prochaines périodes. (Retourner au haut de la page.) Quel type d'extrapolation de tendance est le mieux: horizontal ou linéaire Les données empiriques suggèrent que, si les données ont déjà été ajustées (si nécessaire) pour l'inflation, il peut être imprudent d'extrapoler des courbes linéaires à court terme Tendances très loin dans l'avenir. Les tendances évidentes aujourd'hui peuvent ralentir à l'avenir en raison de causes variées telles que l'obsolescence des produits, la concurrence accrue, les ralentissements cycliques ou les retournements dans une industrie. Pour cette raison, le lissage exponentiel simple obtient souvent une meilleure sortie de l'échantillon que ce qui pourrait être attendu autrement, malgré son extrapolation de tendance horizontale quotnaivequot. Les modifications de tendance amorties du modèle de lissage exponentiel linéaire sont aussi souvent utilisées dans la pratique pour introduire une note de conservatisme dans ses projections de tendance. Le modèle ERP à tendance amortie peut être mis en œuvre comme un cas particulier d'un modèle ARIMA, en particulier un modèle ARIMA (1,1,2). Il est possible de calculer des intervalles de confiance autour des prévisions à long terme produites par les modèles de lissage exponentiel, en les considérant comme des cas spéciaux de modèles ARIMA. La largeur des intervalles de confiance dépend de (i) l'erreur RMS du modèle, (ii) le type de lissage (simple ou linéaire) (iii) la valeur (S) de la constante de lissage et (iv) le nombre de périodes à venir que vous prévoyez. En général, les intervalles s'étalent plus rapidement lorsque 945 devient plus grand dans le modèle SES et ils s'étalent beaucoup plus rapidement lorsque linéaire plutôt que de simple lissage est utilisé. Ce sujet est abordé plus en détail dans la section des modèles ARIMA des notes. (Retournez en haut de la page.)


No comments:

Post a Comment